Evaluation of Phenobarbital Adsorption Efficiency on Biosorbents or Activated Carbon Obtained from Adansonia Digitata Shells

Author:

Ndankou Charnella Stevine Dibandjo12,Ștefan Daniela Simina1ORCID,Nsami Ndi Julius2,Daouda Kouotou2,Bosomoiu Magdalena1

Affiliation:

1. Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica of Bucharest, 1-7 Gheorghe Polizu Street, 011061 Bucharest, Romania

2. Applied Physical and Analytical Chemistry Laboratory, Department of Inorganic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon

Abstract

The removal of pharmaceutically active compounds present in relatively low concentration in wastewater is critical. This is because they have a severe, negative impact on life and the environment. To address this issue, adsorption was used, which is an effective wastewater treatment method for removing substances found in low concentrations in water. This study compared the adsorption performance of active carbon to three biosorbents derived from Adansonia digitata shells. The adsorbents were prepared and characterized using TGA, SEM, EDX, and FTIR analyses and pHPZC. To better understand the adsorption process, equilibrium and reaction kinetics studies were conducted. The effect of contact time, initial phenobarbital concentration, adsorbent mass, and pH was investigated in static conditions. The adsorption results revealed that the biosorbent B3 has a higher affinity for the eliminated compound, with an equilibrium time of 60 min and an adsorption capacity of 47.08 mg/g at an initial concentration of 50 mg/L. The experimental data are consistent with Langmuir and Sips adsorption isotherm models, and with the pseudo-second order and Elovich models for kinetics description. This indicates strong interactions between the adsorbent materials and the pharmaceutical micropollutant. Based on these findings, it appears that, among the tested materials, B3 biosorbent is the most efficient for removing phenobarbital present in low concentrations in water.

Funder

National University of Science and Technology Politehnica of Bucharest

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3