Fabrication of Metal Contacts on Silicon Nanopillars: The Role of Surface Termination and Defectivity

Author:

Giulio Federico1ORCID,Mazzacua Antonio1ORCID,Calciati Luca2ORCID,Narducci Dario1ORCID

Affiliation:

1. Department of Materials Science, University of Milano Bicocca, Via R. Cozzi 55, I-20125 Milan, Italy

2. Department of Physics ‘Giuseppe Occhialini’, University of Milano Bicocca, Piazza Della Scienza 3, I-20126 Milan, Italy

Abstract

The application of nanotechnology in developing novel thermoelectric materials has yielded remarkable advancements in material efficiency. In many instances, dimensional constraints have resulted in a beneficial decoupling of thermal conductivity and power factor, leading to large increases in the achievable thermoelectric figure of merit (ZT). For instance, the ZT of silicon increases by nearly two orders of magnitude when transitioning from bulk single crystals to nanowires. Metal-assisted chemical etching offers a viable, low-cost route for preparing silicon nanopillars for use in thermoelectric devices. The aim of this paper is to review strategies for obtaining high-density forests of Si nanopillars and achieving high-quality contacts on them. We will discuss how electroplating can be used for this aim. As an alternative, nanopillars can be embedded into appropriate electrical and thermal insulators, with contacts made by metal evaporation on uncapped nanopillar tips. In both cases, it will be shown how achieving control over surface termination and defectivity is of paramount importance, demonstrating how a judicious control of defectivity enhances contact quality.

Funder

Italian Ministry of University and Research

NanoHeatTransport Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3