Abstract
External walls have a great influence on the thermal and humidity conditions in buildings as well as on the possibility of reducing energy consumption. While the structural and material aspects of walls and windows are well known, obtaining a tight connection to reduce thermal bridges between the window and walls still poses a significant problem. Therefore, a new window installation system proposed by the authors, eliminating linear and point thermal bridges at the window-to-wall interface, opens a pathway for lowering energy consumption in buildings and increasing thermal comfort and thermal efficiency. To prove the effectiveness of this system, numerical and experimental analyses of heat flow through an outer wall with a window were carried out. The numerical analyses were performed using the TRISCO software package. It was shown that the proposed solution eliminated the occurrence of linear thermal bridges at the window-to-wall interface (a linear heat transmittance coefficient Ψ ≈ 0.007, which meets the requirements of the passive house, was obtained). Thus, heat losses were reduced by nearly eight times compared to conventional installation systems. Numerical calculations were experimentally verified.
Funder
Częstochowa University of Technology
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献