Numerical and Experimental Analysis of Heat Flow at Window-to-Wall Interface

Author:

Pomada MartaORCID,Adamus Janina,Boruszewski Artur

Abstract

External walls have a great influence on the thermal and humidity conditions in buildings as well as on the possibility of reducing energy consumption. While the structural and material aspects of walls and windows are well known, obtaining a tight connection to reduce thermal bridges between the window and walls still poses a significant problem. Therefore, a new window installation system proposed by the authors, eliminating linear and point thermal bridges at the window-to-wall interface, opens a pathway for lowering energy consumption in buildings and increasing thermal comfort and thermal efficiency. To prove the effectiveness of this system, numerical and experimental analyses of heat flow through an outer wall with a window were carried out. The numerical analyses were performed using the TRISCO software package. It was shown that the proposed solution eliminated the occurrence of linear thermal bridges at the window-to-wall interface (a linear heat transmittance coefficient Ψ ≈ 0.007, which meets the requirements of the passive house, was obtained). Thus, heat losses were reduced by nearly eight times compared to conventional installation systems. Numerical calculations were experimentally verified.

Funder

Częstochowa University of Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3