Decentralized Coordination Dispatch Model Based on Chaotic Mutation Harris Hawks Optimization Algorithm

Author:

Wang Yuanyuan,Yu Zexu,Dou ZhenhaiORCID,Qiao Mengmeng,Zhao Ye,Xie Ruishuo,Liu Lianxin

Abstract

Aiming at the economic dispatch problem for an interconnected system with wind power integration, and in order to realize the goals of system economy and improvement of the cross-regional consumption level of wind energy, a decentralized coordination dispatch model is established in this paper. In this model, a DC tie-line is cut by the branch cutting method and used as a coupling variable. A virtual upper-level dispatch center is established, and the economic dispatch problem to be solved is decomposed into a master optimization problem for the upper-level dispatch center and subsidiary optimization problems for the lower-level dispatch centers. For solving this model, an improved Harris hawks optimization (HHO) algorithm called the chaotic mutation Harris hawks optimization (CMHHO) algorithm is proposed. In the CMHHO algorithm, tent mapping and the “DE/pbad-to-pbest/1” strategy are introduced, and a new nonlinear escape energy factor adjustment is proposed. Through an algorithm comparison experiment and a simulation experiment with two examples, the superiority of the CMHHO algorithm, the effectiveness of the proposed model and the applicability of the CMHHO algorithm to the proposed model are verified. The model proposed is of great significance for solving the economic dispatch problem for an interconnected system with wind power integration.

Funder

Zhaihai Dou

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. An Analysis of the Influence of Grid-Connected Renewable Energy on Power Quality of Power Grids;Wei;Power Syst. Clean Energy,2022

2. A Preliminary Study on the Coordinated Development of Nuclear and Renewable Energy Power Generation in China;Wang;Renew. Energy Resour.,2021

3. Assessment and supervision of renewable portfolio standards and strategic selection of stakeholders

4. Study on Some Key Problems Related to Distributed Generation System;Wang;Autom. Electr. Power Syst.,2018

5. Dynamic Low-carbon Dispatching Model Based on Improving PSO and GA;Hu;J. Shanghai Univ. Electr. Power,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3