Mitigation of Chromium Poisoning of Ferritic Interconnect from Annealed Spinel of CuFe2O4

Author:

Hassan Muhammad AqibORCID,Mamat Othman Bin

Abstract

Low-temperature solid oxide fuel cells permit the possibility of metallic interconnects over conventional ceramic interconnects. Among various metallic interconnects, the ferritic interconnects are the most promising. However, chromium poisoning in them adversely affects their performance. To resolve this issue, various coatings and pretreatment methods have been studied. Herein, this article encloses the coating of CuFe2O4 spinel over two prominent ferritic interconnects (Crofer 22 APU and SUS 430). The CuFe2O4 spinel layer coating has been developed by the dip-coating of both samples in CuFe2O4 slurry, followed by heat treatment at 800 °C in a reducing environment (5% hydrogen and 95% nitrogen). Additionally, both samples were annealed to further enhance their spinel coating structure. The morphological and crystallinity analysis confirmed that the spinel coating formed multiple layers of protection while annealing further reduced the thickness and improved the densities. Moreover, the area-specific resistance (ASR) and weight gain rate (WGR) of both samples before and after annealing was calculated using mathematical modeling, which matches with the experimental data. It has been noted that CuFe2O4 spinel coating improved the ASR and WGR of both samples which were further improved after annealing. This research reveals that the CuFe2O4 spinel is the promising protective layer for ferritic interconnects and annealing is the better processing technique for achieving the preferred properties.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3