Solar Photo-Assisted Degradation of Bipyridinium Herbicides at Circumneutral pH: A Life Cycle Assessment Approach

Author:

Teutli-Sequeira AlejandraORCID,Vasquez-Medrano Ruben,Prato-Garcia Dorian,Ibanez Jorge G.

Abstract

This study investigated the degradation of the herbicides diquat (DQ) and paraquat (PQ) by a solar photo-Fenton process that is mediated by Fe(III)-oxalate complexes at circumneutral pH = 6.5 in compound parabolic collectors (CPC)-type reactors. The photo-Fenton process operates efficiently at acidic pH; however, circumneutral operation was key to overcome drawbacks, such as acidification and neutralization steps, reagent costs, and the environmental footprint of chemical auxiliaries. This work revealed a remarkable reduction of total organic carbon for PQ (87%) and DQ (80%) after 300 min (at ca. 875 kJ L−1). Phytotoxicity assays confirmed that the treatment led to a considerable increase in the germination index for DQ (i.e., from 4.7% to 55.8%) and PQ (i.e., from 16.5% to 59.7%) using Cucumis sativus seeds. Importantly, treatment costs (DQ = USD$8.05 and PQ = USD$7.72) and the carbon footprint of the process (DQ = 7.37 and PQ = 6.29 kg CO2-Eqv/m3) were within the ranges that were reported for the treatment of recalcitrant substances at acidic conditions in CPC-type reactors. Life cycle assessment (LCA) evidenced that H2O2 and electricity consumption are the variables with the highest environmental impact because they contribute with ca. 70% of the carbon footprint of the process. Under the studied conditions, a further reduction in H2O2 use is counterproductive, because it could impact process performance and effluent quality. On the other hand, the main drawback of the process (i.e., energy consumption) can be reduced by using renewable energies. The sensitivity study evidenced that carbon footprint is dependent on the energy share of the local electricity mix; therefore, the use of more renewable electrical energy sources, such as wind-power and photovoltaic, can reduce greenhouse gases emissions of the process an average of 26.4% (DQ = 5.57 and PQ = 4.51 kg CO2-Eqv/m3) and 78.4% (DQ = 3.72 and PQ = 2.65 kg CO2-Eqv/m3), respectively. Finally, from the economic and environmental points of view, the experimental results evidenced that photo-assisted treatment at circumneutral pH is an efficient alternative to deal with quaternary bipyridinium compounds.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3