Myocardial Infarction Quantification from Late Gadolinium Enhancement MRI Using Top-Hat Transforms and Neural Networks

Author:

de la Rosa Ezequiel,Sidibé Désiré,Decourselle ThomasORCID,Leclercq ThibaultORCID,Cochet Alexandre,Lalande AlainORCID

Abstract

Late gadolinium enhancement (LGE) MRI is the gold standard technique for myocardial viability assessment. Although the technique accurately reflects the damaged tissue, there is no clinical standard to quantify myocardial infarction (MI). Moreover, commercial software used in clinical practice are mostly semi-automatic, and hence require direct intervention of experts. In this work, a new automatic method for MI quantification from LGE-MRI is proposed. Our novel segmentation approach is devised for accurately detecting not only hyper-enhanced lesions, but also microvascular obstruction areas. Moreover, it includes a myocardial disease detection step which extends the algorithm for working under healthy scans. The method is based on a cascade approach where firstly, diseased slices are identified by a convolutional neural network (CNN). Secondly, by means of morphological operations a fast coarse scar segmentation is obtained. Thirdly, the segmentation is refined by a boundary-voxel reclassification strategy using an ensemble of very light CNNs. We tested the method on a LGE-MRI database with healthy (n = 20) and diseased (n = 80) cases following a 5-fold cross-validation scheme. Our approach segmented myocardial scars with an average Dice coefficient of 77.22 ± 14.3% and with a volumetric error of 1.0 ± 6.9 cm3. In a comparison against nine reference algorithms, the proposed method achieved the highest agreement in volumetric scar quantification with the expert delineations (p< 0.001 when compared to the other approaches). Moreover, it was able to reproduce the scar segmentation intra- and inter-rater variability. Our approach was shown to be a good first attempt towards automatic and accurate myocardial scar segmentation, although validation over larger LGE-MRI databases is needed.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3