Abstract
Constructing protective forests to control water and soil erosion is an effective measure to address land degradation in the Bashang Plateau of North China, but forest dieback has occurred frequently due to severe water deficits in recent decades. However, transpiration dynamics and their biophysical control factors under various soil water contents for different forest functional types are still unknown. Here, canopy transpiration and stomatal conductance of a 38-year-old Ulmus pumila L. and a 20-year-old Caragana korshinskii Kom. were quantified using the sap flow method, while simultaneously monitoring the meteorological and soil water content. The results showed that canopy transpiration averaged 0.55 ± 0.34 mm d−1 and 0.66 ± 0.32 mm d−1 for U. pumila, and was 0.74 ± 0.26 mm d−1 and 0.77 ± 0.24 mm d−1 for C. korshinskii in 2020 and 2021, respectively. The sensitivity of canopy transpiration to vapor pressure deficit (VPD) decreased as soil water stress increased for both species, indicating that the transpiration process is significantly affected by soil drought. Additionally, canopy stomatal conductance averaged 1.03 ± 0.91 mm s−1 and 1.34 ± 1.22 mm s−1 for U. pumila, and was 1.46 ± 0.90 mm s−1 and 1.51 ± 1.06 mm s−1 for C. korshinskii in 2020 and 2021, respectively. The low values of the decoupling coefficient (Ω) showed that canopy and atmosphere were well coupled for both species. Stomatal sensitivity to VPD decreased with decreasing soil water content, indicating that both U. pumila and C. korshinskii maintained a water-saving strategy under the stressed water conditions. Our results enable better understanding of transpiration dynamics and water-use strategies of different forest functional types in the Bashang Plateau, which will provide important insights for planted forests management and ecosystem stability under future climate changes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Science and Technology Project of Hebei Education Department
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献