Analysis of Flood Water Level Variation in the Yichang–Chenglingji Reach of the Yangtze River after Three Gorges Project Operation

Author:

Jiang Lei1,Zeng Ziyue23

Affiliation:

1. Changjiang Institute of Survey, Planning, Design and Research Co., Ltd., Wuhan 430010, China

2. Changjiang River Scientific Research Institute, Wuhan 430010, China

3. Hubei Provincial Key Laboratory of Basin Water Resources and Ecological Environmental Sciences, Wuhan 430010, China

Abstract

Since the impoundment of the Three Gorges Project, the downstream hydrology and river dynamics have been modified. The Yichang–Chenglingji Reach (YCR), as a part of the mainstream of the Middle Yangtze River, has consequently been significantly scoured, which has resulted in stream trenching and section enlargements, without showing any obvious trend in flood level variation, however. This phenomenon can be caused by the increase in riverbed resistance due to river geomorphological change and bottomland vegetation development and the backwater effect of Dongting Lake. To investigate how these factors influence the flood water levels, this study analyzed the variations in the influencing factors based on observational data, theoretical analysis and mathematical modelling, including river channel scouring, riverbed resistance, and the influence of Dongting Lake backwater. Then, the impact of these factors on flood levels was evaluated, followed by a comparative analysis of the effects of various factors. The results show that both the flood backwater height (ΔZ) and the backwater influence range (L) are positively correlated with the outflow intensity (T) at the Chenglingji station. The backwater effect decreases gradually with increasing upstream distance, and the influence on the upstream reach can extend up to Shashi city. It was also indicated that the increase in riverbed resistance due to bottomland vegetation development and river geomorphology are dominant factors in inhibiting flood level declines in the YCR, while the backwater of Dongting Lake just affects local regions. This study can provide a better understanding of the flood level changes of the YCR and thus contribute to flood control and riverbank protection of the Yangtze River in the future.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3