Red Light and 5% Aminolaevulinic Acid (5%) Inhibit Proliferation and Migration of Dysplastic Oral Keratinocytes via ROS Production: An In Vitro Study

Author:

Pierfelice Tania Vanessa12ORCID,Lazarevic Milos3ORCID,Mitic Dijana3ORCID,Nikolic Nadja3ORCID,Radunovic Milena2ORCID,Iezzi Giovanna1,Piattelli Adriano45,Milasin Jelena3ORCID

Affiliation:

1. Department of Medical, Oral and Biotechnological Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy

2. Department of Microbiology and Immunology, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia

3. Department of Human Genetics, School of Dental Medicine, University of Belgrade, Dr Subotica 8, 11000 Belgrade, Serbia

4. School of Dentistry, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy

5. Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Guadalupe, Spain

Abstract

Undiagnosed and untreated oral precancerous lesions often progress into malignancies. Photodynamic therapy (PDT) might be a minimally invasive alternative to conventional treatments. 5-aminolevulinic acid (5-ALA) is one of the most commonly used photosensitizers in PDT, and it is effective on many cancer types. However, its hydrophilic characteristic limits cell membrane crossing. In the present study, the effect of a newly formulated gel containing 5% 5-ALA in combination with red light (ALAD-PDT) on a premalignant oral mucosa cell line was investigated. The dysplastic oral keratinocyte (DOK) cells were incubated with ALAD at different concentrations (0.1, 0.5, 1, and 2 mM) at two different times, 45 min or 4 h, and then irradiated for 7 min with a 630 nm LED (25 J/cm2). MTT assay, flow cytometry, wound healing assay, and quantitative PCR (qPCR) were performed. ALAD-PDT exerted inhibitory effects on the proliferation and migration of DOK cells by inducing ROS and necrosis. mRNA analysis showed modulation of apoptosis-related genes’ expression (TP53, Bcl-2, survivin, caspase-3, and caspase-9). Furthermore, there was no difference between the shorter and longer incubation times. In conclusion, the inhibitory effect of the ALAD-PDT protocol observed in this study suggests that ALAD-PDT could be a promising novel treatment for oral precancerous lesions.

Funder

Ministry of Education, Science, and Technological Development

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3