Abstract
The surface electromyography (sEMG) signal is widely used as a control source of the upper limb exoskeleton rehabilitation robot. However, the traditional way of controlling the exoskeleton robot by the sEMG signal requires one to specially extract and calculate for complex sEMG features. Moreover, due to the huge amount of calculation and individualized difference, the real-time control of the exoskeleton robot cannot be realized. Therefore, this paper proposes a novel method using an improved detection algorithm to recognize limb joint motion and detect joint angle based on sEMG images, aiming to obtain a high-security and fast-processing action recognition strategy. In this paper, MobileNetV2 combined the Ghost module as the feature extraction network to obtain the pretraining model. Then, the target detection network Yolo-V4 was used to estimate the six movement categories of the upper limb joints and to predict the joint movement angles. The experimental results showed that the proposed motion recognition methods were available. Every 100 pictures can be accurately identified in approximately 78 pictures, and the processing speed of every single picture on the PC side was 17.97 ms. For the train data, the mAP@0.5 could reach 82.3%, and mAP@0.5–0.95 could reach 0.42; for the verification data, the average recognition accuracy could reach 80.7%.
Funder
National Natural Science Foundation of China
National High-tech Research and Development Program (863 Program) of Chin
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献