A Novel Hierarchical Extreme Machine-Learning-Based Approach for Linear Attenuation Coefficient Forecasting

Author:

Varone Giuseppe1ORCID,Ieracitano Cosimo2ORCID,Çiftçioğlu Aybike Özyüksel3ORCID,Hussain Tassadaq4,Gogate Mandar4,Dashtipour Kia4ORCID,Al-Tamimi Bassam Naji5,Almoamari Hani6,Akkurt Iskender7ORCID,Hussain Amir4ORCID

Affiliation:

1. Department of Neuroscience and Imaging, University of Chieti Pescara, 66100 Chieti, Italy

2. DICEAM, University Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89060 Reggio Calabria, Italy

3. Department of Civil Engineering, Manisa Celal Bayar University, 45140 Manisa, Turkey

4. School of Computing, Merchiston Campus, Edinburgh Napier University, Edinburgh EH10 5DT, UK

5. School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK

6. Faculty of Computer and Information Systems, Islamic University of Madinah, Medina 42351, Saudi Arabia

7. Physics Department, Suleyman Demirel University, 32260 Isparta, Turkey

Abstract

The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ-rays in industrial and healthcare facilities. Heavy materials’ shielding characteristics hold a lot of potential for bolstering concrete chunks. The mass attenuation coefficient is the main physical factor that is utilized to measure the narrow beam γ-ray attenuation of various combinations of magnetite and mineral powders with concrete. Data-driven machine learning approaches can be investigated to assess the gamma-ray shielding behavior of composites as an alternative to theoretical calculations, which are often time- and resource-intensive during workbench testing. We developed a dataset using magnetite and seventeen mineral powder combinations at different densities and water/cement ratios, exposed to photon energy ranging from 1 to 1006 kiloelectronvolt (KeV). The National Institute of Standards and Technology (NIST) photon cross-section database and software methodology (XCOM) was used to compute the concrete’s γ-ray shielding characteristics (LAC). The XCOM-calculated LACs and seventeen mineral powders were exploited using a range of machine learning (ML) regressors. The goal was to investigate whether the available dataset and XCOM-simulated LAC can be replicated using ML techniques in a data-driven approach. The minimum absolute error (MAE), root mean square error (RMSE), and R2score were employed to assess the performance of our proposed ML models, specifically a support vector machine (SVM), 1d-convolutional neural network (CNN), multi-Layer perceptrons (MLP), linear regressor, decision tree, hierarchical extreme machine learning (HELM), extreme learning machine (ELM), and random forest networks. Comparative results showed that our proposed HELM architecture outperformed state-of-the-art SVM, decision tree, polynomial regressor, random forest, MLP, CNN, and conventional ELM models. Stepwise regression and correlation analysis were further used to evaluate the forecasting capability of ML techniques compared to the benchmark XCOM approach. According to the statistical analysis, the HELM model showed strong consistency between XCOM and predicted LAC values. Additionally, the HELM model performed better in terms of accuracy than the other models used in this study, yielding the highest R2score and the lowest MAE and RMSE.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3