Molecular-Charge-Contact-Based Ion-Sensitive Field-Effect Transistor Sensor in Microfluidic System for Protein Sensing

Author:

Yang Haoyue,Sakata ToshiyaORCID

Abstract

In this paper, we demonstrate the possibility of direct protein sensing beyond the Debye length limit using a molecular-charge-contact (MCC)-based ion-sensitive field-effect transistor (ISFET) sensor combined with a microfluidic device. Different from the MCC method previously reported, biotin-coated magnetic beads are set on the gate insulator of an ISFET using a button magnet before the injection of target molecules such as streptavidin. Then, the streptavidin—a biotin interaction, used as a model of antigen—antibody reaction is expected at the magnetic beads/gate insulator nanogap interface, changing the pH at the solution/dielectric interface owing to the weak acidity of streptavidin. In addition, the effect of the pH or ionic strength of the measurement solutions on the electrical signals of the MCC-based ISFET sensor is investigated. Furthermore, bound/free (B/F) molecule separation with a microfluidic device is very important to obtain an actual electrical signal based on the streptavidin–biotin interaction. Platforms based on the MCC method are suitable for exploiting the advantages of ISFETs as pH sensors, that is, direct monitoring systems for antigen–antibody reactions in the field of in vitro diagnostics.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3