Impact of the Number of Needle Tip Bevels on the Exerted Forces and Energy in Insulin Pen Injections

Author:

Ponsiglione Alfonso Maria1ORCID,Ricciardi Carlo1ORCID,Bonora Enzo2,Amato Francesco1ORCID,Romano Maria1ORCID

Affiliation:

1. Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Naples, Italy

2. Division of Endocrinology, Diabetes and Metabolism, University and Hospital Trust of Verona, 37129 Verona, Italy

Abstract

Patients affected with type 1 diabetes and a non-negligible number of patients with type 2 diabetes are insulin dependent. Both the injection technique and the choice of the most suitable needle are fundamental for allowing them to have a good injection experience. The needles may differ in several parameters, from the length and diameter, up to the forces required to perform the injection and to some geometrical parameters of the needle tip (e.g., number of facets or bevels). The aim of the research is to investigate whether an increased number of bevels could decrease forces and energy involved in the insertion–extraction cycle, thus potentially allowing patients to experience lower pain. Two needle variants, namely, 31 G × 5 mm and 32 G × 4 mm, are considered, and experimental tests are carried out to compare 3-bevels with 5-bevels needles for both the variants. The analysis of the forces and energy for both variants show that the needles with 5 bevels require a statistically significant lower drag or sliding force (p-value = 0.040 for the 31 G × 5 mm needle and p-value < 0.001 for 32 G × 4 mm), extraction force (p-value < 0.001 for both variants), and energy (p-value < 0.001 for both variants) during the insertion–extraction cycle. As a result, 3-bevels needles do not have the same functionality of 5-bevels needles, show lower capacity of drag and extraction, and can potentially be related to more painful injection experience for patients.

Funder

Becton, Dickinson and Company

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3