BcAMT1;5 Mediates Nitrogen Uptake and Assimilation in Flowering Chinese Cabbage and Improves Plant Growth When Overexpressed in Arabidopsis

Author:

Zhu YunnaORCID,Zhong Lihua,Huang Xinmin,Su Wei,Liu HouchengORCID,Sun Guangwen,Song ShiweiORCID,Chen Riyuan

Abstract

Nitrogen (N) is a major limiting factor for plant growth and vegetable production. Understanding the regulatory mechanisms of N uptake, transport, and assimilation is key to improving N use efficiency in plants. Ammonium transporters (AMTs) play an important role in plant N metabolism. In this study, we isolated an important AMT1 subfamily member (BcAMT1;5) with a highly conserved signatural AMT1 subfamily motif from flowering Chinese cabbage. Based on functional complementation in yeast mutant 31019b and overexpression of BcAMT1;5 in Arabidopsis, BcAMT1;5 is a functional AMT. Tissue expression analysis showed that BcAMT1;5 was mainly expressed in roots and showed multiple N regime transcript patterns to respond to varying nutritional conditions. This was up-regulated by N-deficiency and down-regulated by supplying NH4+. The glucuronidase (GUS) activities of BcAMT1;5pro::GUS showed a similar change in response to different N conditions. Overexpression of BcAMT1;5 accelerated the growth of transgenic seedlings, increased NH4+ net influxes, and enhanced the content and accumulation of NH4+ and NO3− at low N concentrations. Additionally, it increased the transcript levels of N assimilation-related genes in shoots. These results indicate that BcAMT1;5 may participate in N uptake and assimilation under various N conditions in flowering Chinese cabbage, but it was differed obviously from other AMT1s.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of Guangdong Province, China

the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams

the Characteristic Innovation Project of Guangdong Provincial Department of Education

the Science and Technology Research Project of Shaoguan, Guangdong Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3