Dissecting Seed Proanthocyandin Composition and Accumulation under Different Berry Ripening Process in Wine Grapes

Author:

Liu Aoyi,Wang Jingjing,Yao Xuechen,Xia Nongyu,Sun Qi,Duan ChangqingORCID,Pan QiuhongORCID

Abstract

Grape berry proanthocyandin (PA) mainly exists in the skin and seeds. Its content and composition determine the intensity of bitterness and astringency. Affected by global warming, the world’s wine-producing regions, in particular in dry-hot regions such as western China, are facing the problem of unsynchronized berry ripening and seed ripening. Therefore, it is urgent to understand the influence of berry ripening progression on the composition and accumulation of seed PA, ultimately providing strategies for grape harvest decisions. In this paper, Vitis vinfera L. cv. Cabernet sauvignon and Marselan grapes from four sub-regions with different maturation processes were used as experimental materials to study the changes of soluble and insoluble PA contents as well as differences in their composition and mean degree of polymers (mDP) in seeds. The results showed that compared with ‘Cabernet sauvignon’ seeds, the mDP of soluble and insoluble PA were higher in ‘Marselan’ seeds. Both varieties showed that the grape berry, with the fastest sugar accumulation, had relatively high soluble PA content in seeds and a high content of (-)-epigallocatechin-3-gallate and (-)-epicatechin in the seed PA composition units. In contrast, the ‘Cabernet sauvignon’ grapes from the YQ vineyard exhibited the slowest sugar accumulation speed among the four studied vineyards, and their seed PA had the highest mDP and the lowest proportion of (-)-epigallocatechin-3-gallate in the composition units when commercially harvested. According to the results, it is suggested that a faster maturation process would bring about higher levels of bitterness composition, such as (-)-epigallocatechin-3-gallate in seed PA, which is not conducive to the formation of good-tasting tannins.

Funder

Key R&D projects in the Ningxia Hui Autonomous Region

National Nature Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3