Shade-Induced Effects on Essential Oil Yield, Chemical Profiling, and Biological Activity in Some Lamiaceae Plants Cultivated in Serbia

Author:

Lalević Dragana,Ilić Zoran S.ORCID,Stanojević Ljiljana,Milenković Lidija,Šunić Ljubomir,Kovač RenataORCID,Kovačević DraganORCID,Danilović BojanaORCID,Milenković Aleksandra,Stanojević Jelena,Cvetković Dragan

Abstract

Thyme, mint, and lemon balm were used to determine whether shading conditions could improve the yield, composition, antioxidant, and antimicrobial activity in plant essential oils (EOs) in comparison with non-shaded plants from an open field. The yield of the EOs of non-shaded thyme, mint, and lemon balm, was 3.44, 3.96, and 0.21 mL/100 g, respectively. Plants covered by nets produced different levels of EOs (3.46, 2.20, and 0.45 mL/100 g) after 120 min of hydrodistillation. The main components of the thyme essential oil are thymol (44.2–43.9%), γ-terpinene (18.3–16.8%), and p-cymene (16.5–17.4%). The predominant components of mint essential oil are piperitenone oxide (52.6–64.8%) and 1,8 cineole (25.9–16.3%), while lemon balm essential oil consists of the following main components: geranial (34.0–32.8%); neral (21.3–24.9%); and piperitenone oxide (17.2–16.7%). The EOs from non-shaded thyme and mint plants have the highest antioxidant activity (EC50 value 0.54 mg/mL and 3.03 mg/mL). However, shaded lemon balm showed a stronger antioxidant activity (EC50 3.43 mg/mL) than non-shaded plants (12.85 mg/mL) after 60 min of incubation. The EOs from all plants showed significant effects against Escherichia coli, Proteus vulgaris, Bacillus subtilis, Staphylococcus aureus, and Candida albicans. The most active EOs against most of the isolates originated from Thymus vulgaris L., plants. Adequate cultivation techniques, such as shading for Lamiaceae plants, has positive effects, especially in Melissa officinalis L. Shading can achieve a higher content and components in terms of the specific biological activity (antioxidant and microbial) of EOs.

Funder

Ministry of Education Science and Technological Development of the Republic of Serbia

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3