Evaluation of Growth and Photosynthetic Rate of Cucumber Seedlings Affected by Far-Red Light Using a Semi-Open Chamber and Imaging System

Author:

Moon Yu Hyun,Yang MyongkyoonORCID,Woo Ui Jeong,Sim Ha Seon,Lee Tae Yeon,Shin Ha Rang,Jo Jung Su,Kim Sung KyeomORCID

Abstract

Far-red light was excluded in photosynthetic photon flux; however, recent studies have shown that it increases photosynthetic capacity. In addition, there were few studies on the whole canopy photosynthetic rate and continuous changes of morphology on cucumber seedlings affected by far-red light. This study evaluated the effect of conventional white LEDs adding far-red light on cucumber seedlings using a semi-open chamber system for the measurement of the whole canopy gas exchange rate, and the Raspberry Pi-based imaging system for the analysis of a continuous image. In the image, through the imaging system, it was confirmed that far-red light promoted the germination rate of cucumber seedlings and enhanced early growth. However, the dry weight of the shoot and root did not increase. The measured net apparent CO2 assimilation rate was improved by an increasing leaf area during the cultivation period. The conventional white LED light source with added far-red light increased the photosynthetic rate of cucumber seedlings’ whole canopy. However, at the early seedling stage, plant height and leaf area of the whole canopy was increased by far-red light, and it was revealed that the image data saturated faster. It was considered that the photosynthetic efficiency decreased due to a shading effect of the limited planting density of the cell tray. The results found that using appropriate far-red light, considering planting density, could increase the photosynthetic rate of the whole canopy of crops, thereby promoting crop growth, but it was judged that the use of far-red light in the early growth stage of cucumber seedlings should be considered carefully.

Funder

Ministry of Education

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3