Tomato (Solanum lycopersicum L.) Genotypes Respond Differently to Long-Term Dry and Humid Heat Stress

Author:

Ayenan Mathieu Anatole TeleORCID,Danquah AgyemangORCID,Hanson PeterORCID,Asante Isaac Kwadwo,Danquah Eric YirenkyiORCID

Abstract

Tomato production in coastal areas in West Africa is constrained by heat stress. There is currently limited empirical evidence on the extent of the effect of heat stress on tomato yield in the sub-region. In this study, we assessed the effects of heat stress on yield and yield components among 16 tomato genotypes with varying heat tolerance status and explored the potential of stress tolerance indices to identify heat tolerant genotypes. The experiments were conducted under three temperature and humidity regimes, namely optimal season (28.37/23.71 °C and 71.0/90.4% day/night), long-term mild and humid (greenhouse, 30.0/26.2 °C and 77.6/97.2%), and long-term mild and dry (open field, 31.50/28.88 °C and 66.72/77.82%) heat stress (HS). All genotypes exhibited significantly higher fruit set percentage, fruit number per plant, fruit weight, and fruit weight per plant in the optimal season compared to both heat stress conditions. In general, the genotypes demonstrated higher performance under dry HS (i.e., HS in open field HSO) than humid HS (i.e., HS in greenhouse HSG). Fruit set decreased by 71.5% and 68.3% under HSG and HSO, respectively, while a reduction of 75.1% and 50.5% occurred in fruit weight per plant under HSG and HSO, respectively. The average sum of ranks values from nine stress tolerance indices and fruit weight per plant (used as proxy trait of yield) identified CLN2498D, CLN3212C, CLN1621L, and BJ01 as heat tolerant under HSG and BJ01, BJ02, Fla.7171, and P005 as heat tolerant under HSO. Fruit weight per plant under long-term heat stress (Ys) and optimal growing conditions (Yp) were suitable to select high performing genotypes under HSO, HSG, and optimal conditions while relative stress index, yield stability index, yield index, stress susceptibility index, and harmonic mean were suitable to select heat tolerant genotypes under either HSG or HSO. Our findings shed light on the extent of the effect of HS on tomato production in the off-season in coastal areas in West Africa and provide new insight concerning the heat tolerance status of the evaluated tomato genotypes.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference46 articles.

1. FAOSTAT FAOSATAhttp://www.fao.org/faostat/en/#data/QC

2. Development of a Horticulture Production Chain in Western Africa: A Case Study of Tomatoes in Burkina Faso and Ghana;Van Wesenbeeck,2014

3. Nutrient Content of Tomatoes and Tomato Products

4. AVRDC - THE WORLD VEGETABLE CENTER TOMATO BREEDING IN SUB-SAHARAN AFRICA: LESSONS FROM THE PAST, PRESENT WORK, AND FUTURE PROSPECTS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3