Genome-Wide Identification, Evolution, and Expression Analysis of the TCP Gene Family in Rose (Rosa chinensis Jacq.)

Author:

Hou Yi,Fan Chunguo,Sun Jingrui,Chang Yufei,Lu Jun,Sun Jingjing,Wang ChangquanORCID,Liu Jinyi

Abstract

Roses have not only high ornamental and economic values but also cultural importance worldwide. As a plant-specific transcription factor gene family, the TCP (TEOSINTE BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR LAND 2) genes have been indicated to be involved in various aspects of plant biological processes, such as leaf morphogenesis and senescence, lateral branching, flower development, stress response and hormone signaling. Currently, TCP genes have been identified and analyzed in many plants, yet there is no systematic analysis in Rosa chinensis. Here, we identified 16 RcTCP genes from R. chinensis genome, which were unevenly distributed in five out of all seven chromosomes. Phylogenetic and structural analyses showed that RcTCP family could be classified into two classes, I (namely PCF) and II, and class II genes can be further divided into CIN and CyC/TB1 subclasses. The different classes of TCP genes were showed to have undergone different evolutionary processes, and genes in the same branch shared similar motifs, gene structures and conserved structural domains. Promoter analysis showed that RcTCPs had many cis-acting elements that are mainly associated with plant growth and development, plant hormones and abiotic/biotic stress responses. Furthermore, the expression levels of RcTCPs under vegetative and reproductive growth and drought stress treatments were analyzed based on public RNA-seq dataset, and it was shown that RcTCPs exhibited serious tissue-specific expression, with most of them dominantly expressed in flowers, leaves and stems, with high levels of expression at different stages of flower and bud differentiation, particularly during petal formation and gametophyte development. The high inducement of seven RcTCP genes from PCF class in drought stress indicated their important roles in biological processes against drought stress. Our results provide valuable information for the evolution and functional characterization of TCP genes in R. chinensis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3