New Insights into the Role of Alternating Temperatures and Cyanide in the ROS-Mediated Cardoon Seed Dormancy Termination

Author:

Puglia Giuseppe DiegoORCID,Balestrasse Karina,Bustos José Santiago,Huarte Héctor Roberto

Abstract

Physiological dormancy in wild cardoon (Cynara cardunculus var. sylvestris) can be terminated by achenes exposure to alternating temperatures, likely with the participation of reactive oxygen species (ROS). Cyanide is a natural compound that mediates seed dormancy removal in some plant species in association with oxidative signalling exerted by ROS. To date, no study has been conducted on the cyanide effect on ROS homeostasis during the germination of cardoon. Here, we showed that the addition of cyanide at low concentrations in dormant cardoon achenes promotes dormancy breakage at a constant temperature, speeds up germination to alternating temperatures and promotes ROS accumulation in embryonic axes of dormant achenes. The in-silico transcriptome analysis showed that the expression levels of transcripts of genes associated with ROS signalling and production, calcium signalling, gibberellins biosynthesis and cell wall loosening were significantly up-regulated at the alternating temperatures imbibition condition. In contrast, the expression of gene transcripts associated with the inhibition of germination, ABA biosynthesis and signalling were up-regulated at the constant temperature imbibition. However, no significant difference in lipid peroxidation or protein carbonylation levels was observed when achenes were imbibed at constant or alternating temperature conditions. These results suggest that dormancy termination triggered by alternating temperatures or cyanide could be mediated by ROS production and signalling in the cardoon embryonic axis, but this does not determine extensive protein carbonylation.

Funder

LOMASCyT IV/Universidad Nacional de Lomas de Zamora

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3