Abstract
As smart farms are applied to agricultural fields, the use of big data is becoming important. In order to efficiently manage smart farms, relationships between crop growth and environmental conditions are required to be analyzed. From this perspective, various artificial intelligence algorithms can be used as useful tools to quantify this relationship. The objective of this study was to develop and validate an algorithm that can interpret the crop growth rate response to environmental factors based on a recurrent neural network (RNN), and to evaluate the algorithm accuracy compared to the process-based model (PBM). The algorithms were trained with data from three growth periods. The developed methods were used to measure the crop growth rate. The algorithm consisted of eight environmental variables days after transplanting and two crop growth characteristics as input variables producing weekly crop growth rates as output. The RNN-based crop growth rate estimation algorithm was validated using data collected from a commercial greenhouse. The CropGro-bell pepper model was applied to compare and evaluate the accuracy of the developed algorithm. The training accuracies varied from 0.75 to 0.81 in all growth periods. From the validation result, it was confirmed that the accuracy was reliable in the commercial greenhouse. The accuracy of the developed algorithm was higher than that of the PBM. The developed algorithm can contribute to crop growth estimation with a limited number of data.
Funder
Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries
Jeonju University
Subject
Horticulture,Plant Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献