Inferring the Potential Geographic Distribution and Reasons for the Endangered Status of the Tree Fern, Sphaeropteris lepifera, in Lingnan, China Using a Small Sample Size

Author:

Wei Xueying,Harris AJORCID,Cui Yuwen,Dai Yangwu,Hu Hanjia,Yu Xiaoling,Jiang Rihong,Wang FaguoORCID

Abstract

In this study, we investigated suitable habitats for the endangered tree fern, Sphaeropteris lepifera (J. Sm. ex Hook.) R.M. Tryon, based on fieldwork, ecological niche modeling, and regression approaches. We combined these data with the characterization of spore germination and gametophytic development in the laboratory to assess the reasons why S. lepifera is endangered and to propose a conservation strategy that focuses on suitable sites for reintroduction and accounts for the ecology and biphasic life cycle of the species. Our methods represent an integration of process- and correlation-based approaches to understanding the distributional patterns of this species, and this combined approach, while uncommonly applied, is a more robust strategy than either approach used in isolation. Our ecological niche models indicated that cold temperature extremes, temperature stability over long- and short-terms, and the seasonality of precipitation were among the most important abiotic environmental factors affecting the distribution of S. lepifera among the variables that we measured. Moreover, distribution of this fern species is also strongly influenced by the timing of development of male and female gametes. Additionally, we observed that slope aspect, specifically south-facing slopes, facilitates more incoming sunlight for mature trees, and simultaneously, provides greater, much-needed shade for fiddleheads on account of the canopy being denser. We believe that our study can provide important guidance on the restoration of S. lepifera in the wild. Specifically, potential restoration areas can be screened for the specific environmental factors that we infer to have a critical impact on the survival of the species.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3