Author:
Li Jingwei,He Min,Xu Xiuhong,Huang Tingmin,Tian Huan,Zhang Wanping
Abstract
Shipping of in vitro micro-cuttings in tubes or jars is a frequently used method as the plants are more likely to quickly reproduce and comply with quarantine regulations in plant germplasm distribution. However, these containers are fragile during transportation. To diminish the risk associated with the long-distance shipping of in vitro plants, a safe and widely applicable packing and conservation technique based on microplate and slow growth was developed in this study. Potato cultivar ZHB and ginger cultivar G-2 were used to optimize the system with microplates (96 wells), vacuum-sealed packaging, and slow-growth techniques. Under regular culture conditions, packing in vacuum-sealed microplates reduced the survival of ZHB and G-2 micro-cuttings to 85.8% and 20.0%, respectively, and regeneration to 61.8% and 0%, respectively. Reducing the temperature to 10 °C maintained the survival of ZHB and G-2 micro-cuttings in the range of 83.3–100% after 60 days. Exposure to darkness decreased the survival of G-2 and inhibited regrowth. Thus, conservation in darkness at 10 °C is suggested. The effects of iron concentration and plant growth retardants were further assessed. The addition of 1/4 MS medium combined with 100 mg/L chlormequat chloride (CCC) resulted in full survival and growth inhibition of plantlets, without malformation identified. Finally, incubation with 1/4 MS medium supplemented with 100 mg/L CCC in vacuum-sealed microplates at 10 °C in the dark resulted in high survival and suppressed germination. Sweet potato HXS was incubated as well to test the broad-spectrum applications of the technique; 100% survival and 6.7% germination was gained. Morphological indices of released cuttings recovered to control levels after two cycles of subculture in MS medium. A 0.1–0.2% genetic variation was detected by SSR and ISSR, suggesting genetic stability of the conserved samples. Finally, micro-cuttings were safely transported to cities located thousands of kilometers away without package and sample damage. Our results enable easy distribution of in vitro plant germplasms.
Subject
Horticulture,Plant Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献