Comprehensive Evaluation of Low Temperature and Salt Tolerance in Grafted and Rootstock Seedlings Combined with Yield and Quality of Grafted Tomato

Author:

Fu Shijie,Chen Jiaqian,Wu Xiaolei,Gao HongboORCID,Lü GuiyunORCID

Abstract

Environmental stress, especially in the form of low temperatures and salinity, has becomethe main limiting factor affecting the yield and quality of tomatoes in greenhouse production in China. Grafting, as an effective and sustainable strategy for improving plant stress tolerance, is closely related to rootstock properties and scion affinity. Here, 15 commercial rootstock genotypes were collected to investigate the differences in low temperatures and salt tolerance of rootstocks and grafted tomato seedlings in parallel, as well as well as the effect of grafting on the yield and quality of tomato. The results indicated that there were differences among rootstocks, and the resistance of grafted seedlings mainly depended on the characteristics of the rootstocks. We also found that the resistance of grafted seedlings was affected by the affinity between the scion and rootstock. Genotypes 6, 7, 11, and 14 showed advantages over the other genotypes in seedling growth, based on the fresh weight of the plants, the seedling index, and the root-shoot ratio. Genotypes 2, 7, 11, and 14 had greater total root lengths and higher numbers of root tips than other genotypes. These results showed that the significant increase in growth in the grafted tomato seedlings might have been attributable to the vigorous roots of the rootstocks. Genotypes 4, 7, 11, and 13 showed advantages with respect to low temperature stress, whereas genotypes 7, 11, 12, and 13 showed advantages with respect to salt stress. The salt tolerance of grafted tomato seedlings was influenced by both scion affinity and rootstock characteristics and was decreased by grafting. The highest yields were obtained from the grafted plants of genotypes 7 and 11, whose yields were 17.2% and 14.6% higher, respectively, than those of the control group. The rootstock genotype did not affect the fruit quality parameters, such as soluble protein content, titratable acidity, and total soluble solids content, and in most cases, the lycopene and ascorbic acid contents of the fruit increased. After considering the results pertaining to the stress tolerance of rootstocks in combination with fruit yield and quality, genotypes 7 and 11 were selected as potentially suitable tomato rootstock varieties for further large-scale applications. These results provide a new perspective for the study of rootstock characteristics and an important reference for grafted tomato cultivation in greenhouse production.

Funder

the Key Research Projects of Hebei

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference48 articles.

1. Management strategies of Fusarium wilt disease of tomato incited by Fusarium oxysporum f. sp. lycopersici (Sacc.) A Review;Bawa;Int. J. Adv. Acad. Res.,2016

2. A chemical genetic roadmap to improved tomato flavor

3. Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon

4. Second salinization of greenhouse soil and its effects on soil properties;Yu;Soils,2005

5. Kaolin improves salinity tolerance, water use efficiency and quality of tomato

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3