Transcriptome Analysis of Morus alba L. Flower Reveals Important Genes of Floral Sex Differentiation

Author:

Xu Dashun,Hou Zhiwei,Deng Na,Li Yan,Yang Luoling,Li Shuxuan,Wang Xiling

Abstract

Mulberry (Morus alba L.) is a perennial woody plant with significant economic benefits and ecological value. The floral character of mulberry has an important impact on the yield and quality to its fruits and leaves. However, little is known about the molecular mechanism of mulberry floral differentiation still now. The transcriptome data were obtained via Illumina HiSeq high-throughput sequencing from male and female inflorescences of the monoecious mulberry. A total of 26.21 Gb clean data were obtained, and as many as 100,177 unigenes with an average length of 821.66 bp were successfully assembled. In comparative-omics analysis, 1717 differentially expressed genes (DEGs) were identified between male and female flowers and only a quarter of the DEGs were highly expressed in female flowers. The KEGG pathway enrichment analysis revealed that DEGs were involved in glucose and lipid metabolism, hormone signal transduction, and the regulation of related transcription factors. In addition, many DEGs related to flower development and plant sex differentiation have also been detected, such as PMADS1/2, AGAMOUS, FLOWERING LOCUS T (FT), APETALA 2 (AP2), TASSELSEED2 (TS2), and ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17). Finally, the expression patterns of selected 20 DEGs were validated by q-PCR and the results showed that the transcriptome data were highly reliable. This study shows that the differentiation of male and female flowers of mulberry is affected and regulated by multiple factors, with transcription factors and hormone signals playing a key role. Briefly, the current data provide comprehensive insights into the mulberry tree’s floral differentiation as well as a bioinformatics framework for the development of molecular breeding of mulberry.

Funder

ChongQing Municipal Commission of Commerce

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3