Abnormal Programmed Cell Death of Tapetum Leads to the Pollen Abortion of Lycium barbarum Linnaeus

Author:

Zhang Xin,Bei Zhanlin,Ma Haijun,Wei Zhaojun,Zhou Jun,Ren Yufeng,Xu Wendi,Nan Peng,Wang Yuguo,Li Linfeng,Zhang Wenju,Yang Ji,Zhong Yang,Song Zhiping

Abstract

Programmed cell death (PCD) in tapetum provides nutrients for pollen development. Once this process becomes abnormal, the pollen will be aborted, and sterile lines will be formed. Lycium barbarum L. is a well-known medicinal and edible plant, and male sterile lines play an important role in the cultivation of its new varieties by utilizing hybrid vigor. However, the male sterility mechanism of L. barbarum is poorly understood. In this study, the main characteristic changes during the pollen development of L. barbarum sterile line (Ningqi No. 5) and fertile line (Ningqi No. 1) were compared through anatomical observation, physiological detection and gene expression analysis. Anatomical observation showed that compared with that of the fertile line, the tapetum of the sterile line persisted during pollen development, the organelle morphology and number of tapetal cells changed remarkably, and the PCD was remarkably delayed. Membranous peroxidation caused by reactive oxygen species (ROS) in the sterile line occurred from the late tetrad to the pollen grain stage, and that in Ningqi No. 1 transpired in the tetrad stage. This difference in the dynamic changes of ROS affected the redox balance of microspore development. qPCR detection of DYT1 and MS1 genes regulating tapetum development showed that compared with those in the fertile line, the expression levels of both genes in the sterile line changed significantly from pollen mother cell stage to pollen grain stage. This finding may be associated with the start-up delay of tapetal PCD. All these results suggested that abnormal tapetal PCD is an important mechanism leading to male sterility in L. barbarum.

Funder

Natural Science Foundation in Ningxia Province

Key Research and Development Plan of Ningxia Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3