Sustainable Olive Culture under Climate Change: The Potential of Biostimulants

Author:

Dias Maria CelesteORCID,Araújo MárciaORCID,Silva SóniaORCID,Santos ConceiçãoORCID

Abstract

Climatic extreme events, like droughts, heatwaves, and floods are becoming recurrent and represent a threat to agriculture, lowering plant growth and productivity. The Mediterranean region is a climate-change hotspot, where traditional agricultural systems, like olive groves, are particularly challenged. Both the traditional and intensive systems of olive culture coexist in the Mediterranean. Both systems differ in their demands for water and agrochemicals, but nowadays, the global inputs of agrochemicals and irrigation have increased to achieve high productivity and profitability. Finding sustainable alternatives to maintain high productivity under the ongoing climate change is urgent to meet the EU-Farm to Fork strategy and climate neutrality. Candidate eco-friendly alternatives include biostimulants. These are substances or microorganisms, that activate signaling cascades and metabolic processes, increasing plant yield, quality, and tolerance to stressors. These benefits include a better growth, nutritional status and water availability, leading to a decreased demand for irrigation and agrochemicals. In this review, we aim to present different types of biostimulants (e.g., seaweed, protein hydrolysates, humic substances, microorganisms and nanomaterials), their mode of action and benefits in agriculture. We also explore the current state-of-the-art regarding the use of biostimulants in olive culture, and their potential benefits to increase tolerance to (a)biotic challenges.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

General Medicine

Reference141 articles.

1. Insight into the role of PGPR in sustainable agriculture and environment;Front. Sustain. Food Syst.,2021

2. Impact of climate change on biodiversity and food security: A global perspective—A review article;Agric. Food Secur.,2021

3. Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., and van Diemen, R. (2019). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems, Available online: https://www.ipcc.ch/site/assets/uploads/sites/4/2021/07/210714-IPCCJ7230-SRCCL-Complete-BOOK-HRES.pdf.

4. Leogrande, R., El Chami, D., Fumarola, G., Di Carolo, M., Piegari, G., Elefante, M., Perrelli, D., and Dongiovanni, C. (2022). Biostimulants for Resilient Agriculture: A Preliminary Assessment in Italy. Sustainability, 14.

5. Plant biostimulants: Definition, concept, main categories and regulation;Sci. Hortic.,2015

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3