Generation of Composite Rosa roxburghii Plants with Transgenic Roots by Agrobacterium-Mediated Transformation

Author:

Gong Lisha,Lu Min,An Huaming

Abstract

Rosa roxburghii Tratt. is an emerging fruit endemic to China, which has the reputation of being the “King of Vitamin C” because of its abundance of vitamin C. However, it is also a recalcitrant species that imposes severe limitations on the transformation and whole-plant regeneration processes, restricting the verification of the functional genes. Therefore, developing a feasible and efficient genetic transformation method for R. roxburghii is an urgent requirement. Herein, K599 with eGFP was used as the Agrobacterium strain to optimize the genetic transformation from four factors: bacterial concentration, seedling age, infection site, and method. First, the original roots of 5-day-old seedlings were excised, and then the slant cuts of the remaining hypocotyls with 0.5 cm length were placed in K599 at an OD600 of 0.4. Subsequently, the explants were planted in a moistened sterile vermiculite after the beveled site was stained with a clump of bacteria. The results showed that the transformation efficiency of this cutting method was almost 28% at 30 days post-inoculation, while the transformation efficiency obtained by injecting 5-day-old seedlings 0.5–1.0 cm away from the primary root with K599 at an OD600 of 0.4 was only about 7%. Taken together, the current findings provide evidence that Agrobacterium-mediated transformation is a simple, fast, and efficient approach for generating composite R. roxburghii plants. Thus, this method has a broad application to analyze the gene functions in R. roxburghii and other related plant species.

Funder

National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3