Soil Abandonment as a Trigger for Changes in Zn Fractionation in Afforested Former Vineyard Acidic Soils

Author:

Pérez-Rodríguez Paula12ORCID,Nóvoa-Muñoz Juan Carlos12ORCID,Arias-Estévez Manuel12ORCID,Fernández-Calviño David12ORCID

Affiliation:

1. Departamento de Bioloxía Vexetal e Ciencia do Solo, Facultade de Ciencias, Universidade de Vigo, As Lagoas s/n, 32004 Ourense, Spain

2. Instituto de Agroecoloxía e Alimentación (IAA), Universidade de Vigo, Campus Auga, 32004 Ourense, Spain

Abstract

Zinc is an essential element for plant nutrition, but it may cause toxicity depending on its bioavailability and potential transformation in soil. In vineyard soils, high concentrations of Zn are usually found, mainly due to agricultural practices. However, a great abandonment of vineyards has recently occurred, leading to changes in the total and bioavailable Zn concentrations, as well as Zn fractionation. We analyzed Zn concentrations (total, ZnT, and bioavailable, ZnED) and fractionation in the soil of three paired sites (PM, PT, and AR) up to depths of 50 cm in active and adjacent abandoned vineyards that were already transformed into forests. The ZnT averaged at 210 mg kg−1 among all studied vineyards. The results showed changes in the vertical pattern ZnT concentrations after vineyard abandonment at the PM and PT sites, while at the AR site, no great variation occurred. The ZnED (mean values = 7 mg kg−1) decreased after abandonment at PM and AR in the uppermost surface layers, while it increased in the top 10 cm at the PT site, reaching up to 60 mg kg−1. Regarding Zn fractionation in active vineyards, the residual fraction (ZnR) was the most abundant, followed by Zn bound to crystalline Fe and Al oxy-hydroxides (ZnC) and Zn bound to soil organic matter (ZnOM). After abandonment, the ZnR slightly increased and the ZnC slightly decreased at the PM and AR sites at all depths, while the ZnOM showed a noticeable variation in the uppermost 10 cm of the PT site. These results suggest that the soil organic matter that is provided during afforestation may play an important role in Zn fractionation and mobilization, depending on its humification degree and chemical stability. Zn mobilization could result in a positive nutrient supply for plants, but caution must be taken, since an excess of Zn could cause toxicity in long-term abandoned vineyards.

Funder

Consellería de Cultura, Educación e Universidade

Spanish Ministry of Science and Innovation and NextGenerationEU

University of Vigo

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3