The Effects of UV-C Irradiation and Low Temperature Treatment on Microbial Growth and Oxidative Damage in Fresh-Cut Bitter Gourd (Momordica charantia L.)

Author:

Baligad John Louie1,Huang Pung-Ling23ORCID,Do Yi-Yin12ORCID

Affiliation:

1. Master Program in Global Agriculture Technology and Genomic Science, National Taiwan University, Taipei 10617, Taiwan

2. Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan

3. Graduate Institute of Biotechnology, Chinese Culture University, Taipei 11114, Taiwan

Abstract

Fresh-cut fruits and vegetables are convenient and retain maximum nutrients. However, even minimal processing accelerates product deterioration and reduces food safety due to microbial infection. In this study, the effects of UV-C irradiation, low temperature treatment, and their combination on the microbial risk of fresh-cut bitter gourd were evaluated. Firstly, next-generation sequencing technology was utilized to identify microorganisms on the surface of fresh-cut bitter gourd after 12 h of exposure to room temperature, and a total of 34 bacterial species were identified. Subsequently, fresh-cut bitter gourd treated with UV-C or/and 4 °C and then kept at room temperature for 6 h was assessed for its viable bacterial count. The results showed that both 0.5 and 1.5 kJ·m−2 UV-C irradiation significantly inhibited microbial growth compared to 4 °C and the no treatment control. Meanwhile, no significant differences were observed between UV-C and the combined treatments. Lower doses of UV-C irradiation reduced hydrogen peroxide and malondialdehyde content, increased the proline level, and improved the activities of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, catalase, and critical enzymes involved in the phenylpropanoid pathway, such as phenylalanine ammonia-lyase and polyphenol oxidase. This suggests that UV-C irradiation alone can effectively reduce bacterial contamination in fresh-cut bitter gourd to an acceptable level.

Funder

the Council of Agriculture, Republic of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3