Usage of Machine Learning Algorithms for Establishing an Effective Protocol for the In Vitro Micropropagation Ability of Black Chokeberry (Aronia melanocarpa (Michx.) Elliott)

Author:

Demirel Fatih1ORCID,Uğur Remzi2,Popescu Gheorghe Cristian3ORCID,Demirel Serap4,Popescu Monica5

Affiliation:

1. Department of Agricultural Biotechnology, Faculty of Agriculture, Igdır University, Igdir 76000, Türkiye

2. Department of Park and Garden Plants, Nurdagi Vocational School, Gaziantep University, Gaziantep 27000, Türkiye

3. Department of Applied Sciences and Environmental Engineering, National University of Science and Technology POLITEHNICA Bucharest, University Center of Pitesti, 110040 Pitești, Romania

4. Department of Molecular Biology and Genetics, Faculty of Science, Van Yüzüncü Yıl University, Van 65080, Türkiye

5. Department of Natural Sciences, National University of Science and Technology POLITEHNICA Bucharest, University Center of Pitesti, 110040 Pitești, Romania

Abstract

The primary objective of this research was to ascertain the optimal circumstances for the successful growth of black chokeberry (Aronia melanocarpa (Michx.) Elliott) using tissue culture techniques. Additionally, the study aimed to explore the potential use of machine learning algorithms in this context. The present research investigated a range of in vitro parameters such as total number of roots (TNR), longest root length (LRL), average root length (ARL), number of main roots (NMR), number of siblings (NS), shoot length (SL), shoot diameter (SD), leaf width (LW), and leaf length (LL) for Aronia explants cultivated in different media (Murashige and Skoog (MS) and woody plant medium (WPM)) with different concentrations (0, 0.5, 1, 1.5, and 2 mg L−1) of indole-3-butyric acid (IBA). The study showed that IBA hormone levels may affect WPM properties, affecting the LRL and ARL variables. Aronia explant media treated with 2 mg L−1 IBA had the greatest TNR, NMR, NS, SL, and SD values; 31.67 pieces, 2.37 pieces, 5.25 pieces, 66.60 mm, and 2.59 mm, in that order. However, Aronia explants treated with 1 mg L−1 IBA had the highest LW (9.10 mm) and LL (14.58 mm) values. Finally, Aronia explants containing 0.5 mg L−1 IBA had the greatest LRL (89.10 mm) and ARL (57.57 mm) values. In general, the results observed (TNR, LRL, ARL, NMR, NS, SL, SD, LW, and LL) indicate that Aronia explants exhibit superior growth and development in WPM (25.68 pieces, 68.10 mm, 51.64 mm, 2.17 pieces, 4.33 pieces, 57.95 mm, 2.49 mm, 8.08 mm, and 14.26 mm, respectively) as opposed to MS medium (20.27 pieces, 59.92 mm, 47.25 mm, 1.83 pieces, 3.57 pieces, 49.34 mm, 2.13 mm, 6.99 mm, and 12.21 mm, respectively). In the context of the in vitro culturing of Aronia explants utilizing MS medium and WPM, an analysis of machine learning models revealed that the XGBoost and SVM models perform better than the RF, KNN, and GP models when it comes to making predictions about those variables. In particular, the XGBoost model stood out due to the fact that it had the greatest R-squared value, and showed higher predictive ability in terms of properly forecasting values in comparison to actual outcomes. The findings of a linear regression (LR) analysis were used in order to conduct an efficacy study of the XGBoost model. The LR results especially confirmed the findings for the SD, NS, and NMR variables, whose R-squared values were more than 0.7. This demonstrates the extraordinary accuracy that XGboost has in predicting these particular variables. As a consequence of this, it is anticipated that it will be beneficial to make use of the XGboost model in the dosage optimization and estimation of in vitro parameters in micropropagation studies of the Aronia plant for further scientific investigation.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference83 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3