FytoSol, a Promising Plant Defense Elicitor, Controls Early Blight (Alternaria solani) Disease in the Tomato by Inducing Host Resistance-Associated Gene Expression

Author:

Bektas YaseminORCID

Abstract

Early blight (EB), caused by the necrotrophic pathogen Alternaria solani, is one of the most common and destructive diseases in the tomato (Solanum lycopersicum L.). The use of fungicides is a prominent tactic used to control EB; however, their undesirable effects on the environment and human health, as well as involvement in the development of resistant strains, have driven researchers to search for new alternatives. Plant defense elicitors are exogenous defense-triggering molecules that induce a plant’s defense system associated with extensive transcriptional- and metabolic reprogramming of the genome and do not cause direct toxicity to phytopathogens. Moreover, 2,6-dichloroisonicotinic acid (INA) was an early-identified and strong plant defense elicitor to various phytopathogens. Recently, the combination of chitosan oligomers and pectin-derived oligogalacturonides that can mimic the induction of plants by a pathogen or damaged-derived molecules (PAMP and DAMP) were characterized as defense elicitors, named FytoSol. In this study, the preventive roles of these two defense elicitors—FytoSol and INA—against EB disease and its molecular basis, were explored. According to the results, FytoSol significantly reduced disease severity by an average of 30% for almost one month with an AUDPC value of 399 compared to the control, which had an AUDPC value of 546. On the contrary, INA did not provide any protection against EB. Gene expression analyses of these two distinct plant defense elicitors indicated that the expression patterns of several SA-, JA-, or ET-pathway-related genes (Pti4, TPK1b, Pto kinase, TomloxD, PRB1-2, SABP2, WRKY33b, WRKY70, PR-5, and PR3) were induced by defense elicitors differently. FytoSol extensively upregulated gene expressions of PR3, downregulated the SA-related defense pathway, and provided remarkable protection against the necrotrophic pathogen Alternaria solani. On the contrary, INA mostly induced genes related to biotrophic and/or hemibiotrophic pathogen protection. Our results indicate that FytoSol is a promising plant defense elicitor against EB and the modes of action of the elicitors are important to characterize their effects against pathogens. Further research may extend the use of defense elicitors as alternatives to pesticides in agriculture.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3