Micropropagation of Vaccinium corymbosum L.: An Alternative Procedure for the Production of Secondary Metabolites

Author:

Clapa DoinaORCID,Nemeș Silvia-AmaliaORCID,Ranga Floricuța,Hârța MonicaORCID,Vodnar Dan-CristianORCID,Călinoiu Lavinia-FlorinaORCID

Abstract

In vitro culture has become a dependable approach for the mass production of plant material as the market for innovative plant-derived medicinal approaches has grown significantly. Furthermore, because it permits manipulation of biosynthetic routes to boost the production and accumulation of certain compounds, this technology has enormous potential for the manufacture of natural bioactive chemicals. As a result, the goal of this study was to develop an efficient micropropagation system for biomass production and to investigate the accumulation of bioactive compounds from Vaccinium corymbosum L., Duke and Hortblue Petite cultivars. Two in vitro plant tissue culture systems were used for shoots production: a solid medium (5 g/L Plant agar) and liquid medium (Plantform bioreactor). The culture medium used was Woddy Plant Medium (WPM) supplemented with two growth regulators: 0.5 mg/L and 1 mg/L zeatina (Z) and 5 mg/L N6-(2-Isopentenyl) adenine (2iP). The content of phenolic compounds, carotenoids, and chlorophylls of the in vitro shoot extracts were examined via the HPLC-DAD-MS/MS technique. The results showed that cv. Hortblue Petite produced a higher amount of biomass compared with cv. Duke, on all variants of culture media in both systems (solid and liquid), while the shoots extract of the Duke variety in the liquid culture system (under all concentrations of growth regulators) had the highest content of total phenolic compounds (16,665.61 ± 424.93 μg/g). In the case of the lipophilic compounds analysed (chlorophylls and carotenoids), the solid medium reported the highest values, whereas media supplemented with 0.5 mg/L Z was proved to have the richest total content for both cultivars.

Funder

Unitatea Executiva Pentru Finantarea Invatamantului Superior a Cercetarii Dezvoltarii si Inovarii

Ministerul Cercetării și Inovării

European Union

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3