Evaluation of Electrostatic Spraying Equipment in a Greenhouse Pepper Crop

Author:

Sánchez-Hermosilla JuliánORCID,Pérez-Alonso JoséORCID,Martínez-Carricondo PatricioORCID,Carvajal-Ramírez FernandoORCID,Agüera-Vega FranciscoORCID

Abstract

Greenhouse vegetable production is of great importance in southern Europe. It is a cultivation system characterised by a high planting density and environmental conditions that favour the development of pests and diseases. Although alternatives to chemical pest and disease control have been used over recent years in greenhouse crops, it is still mostly plant protection products that are used to protect crops and prevent crop losses. Hand-held spraying equipment is mainly used to apply plant protection products to this type of crop. This equipment is technologically basic, offering low deposition efficiency in the plant canopy, high losses to the ground, and a high risk of worker exposure. In this context, it is important to utilise technologies that reduce the problems associated with using the conventional hand-held sprayers in greenhouses. This study evaluated the deposition and uniformity in the plant canopy and the losses to the ground when applying plant protection products with an electrostatic hand-held sprayer; the results were then compared with applications carried out using a conventional hand-held sprayer. For this purpose, a colorimetric method has been used based on the application of a tartrazine solution. The tests showed that the electrostatic spraying equipment increased the plant canopy deposition by 1.48 times that of the hand-held spray gun, resulting in a 48% reduction in the application rate. There was also a 1.78-times increase in deposition on the underside of the leaves and a 36.36% reduction in losses to the ground. In general, the electrostatic hand-held sprayer improves the effectiveness of the plant canopy deposition and reduces losses to the ground compared to the hand-held spray gun commonly used in pest and disease control.

Funder

University of Almería

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3