Effects of Chromium Toxicity on Physiological Performance and Nutrient Uptake in Two Grapevine Cultivars (Vitis vinifera L.) Growing on Own Roots or Grafted onto Different Rootstocks

Author:

Nikolaou Kleopatra-Eleni,Chatzistathis TheocharisORCID,Theocharis SerafeimORCID,Argiriou AnagnostisORCID,Koundouras StefanosORCID,Zioziou Elefteria

Abstract

Chromium toxicity is considered within the most severe and dangerous nutritional disorders, and it can often be observed in crops grown in industrial areas. The present study aims to determine the effects of Cr(VI) toxicity on the growth, nutrition, and physiological performance of grapevines. In a pot hydroponic experiment, own-rooted Merlot and Cabernet Franc grapevine cultivars or cultivars grafted onto 1103P and 101-14 Mgt rootstocks were exposed to 120 μM Cr(VI). Leaf interveinal chlorosis appeared after forty-five days of treatment. Overall leaf chlorosis and brown root coloration after sixty days was reported. A significant effect on the majority of the measured parameters due to the Cr(VI) treatment was observed. Chromium stress increased the total Cr concentrations in all parts of the vines, i.e., leaves, shoots, roots, and trunks. When comparing between the studied plant sections, the roots presented the highest Cr concentrations, ranging from 396 to 868 mg kg−1 d. w., and then, in descending order, the Cr concentrations ranged from 41 to 102 mg kg−1 d. w. in the trunks, from 2.0 to 3.3 mg kg−1 d. w. in the leaves, and from 1.9 to 3.0 mg kg−1 d. w. in the shoots. Between the assessed rootstocks, 1103P was identified to be a better excluder of Cr concentration in the roots and other aerial parts of the vines. Additionally, chromium toxicity negatively affected the concentrations and compartmentalization of the most important nutrients. Leaf chlorophyll (Chl) concentration decreased down to approximately 53% after sixty days of Cr stress. Chromium toxicity significantly reduced the stem water potential (SWP), net CO2 assimilation rate (A), stomatal conductance (gs), and PSII maximum quantum yield in all the cases of grafted or own-rooted vines. At this stage, chromium stress increased the leaf total phenolic content from 46.14% in Merlot vines to 75.91% in Cabernet Franc vines.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3