Comprehensive Transcriptome and Metabolome Characterization of Peony ‘Coral Sunset’ Petals Provides Insights into the Mechanism of Pigment Degradation

Author:

Zhang Hechen1,Yuan Xin1,Wang Rui1,Wang Limin1,Gao Jie1,Wang Huijuan1,Li Yanmin1,Fu Zhenzhu1

Affiliation:

1. Horticultural Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China

Abstract

The petals of Paeonia lactiflora ‘Coral Sunset’ change color from coral pink to pale yellow after flower opening. Pigment-targeted metabolomic analysis showed that the carotenoid and anthocyanin contents rapidly decreased after petal fading. SMART-sequencing and next-generation-sequencing analyses were performed to identify differentially expressed transcripts to characterize the candidate genes involved in petal fading. The expression of certain genes associated with anthocyanin and carotenoid synthesis and degradation was correlated with the petal-fading phenotype. The anthocyanin synthesis (AS) structural genes, CHS, F3H, F3′H, DFR, and ANS, and the carotenoid synthesis genes, LCYB and LCYE, were strongly expressed before fading, but their expression significantly declined after fading. In contrast, the expression of certain genes associated with oxidase activity and light signaling significantly increased after fading. Therefore, inhibition of pigment synthesis and accelerated pigment degradation may be crucial for petal fading. A R2R3-MYB family member of subgroup 4 (MYBs-SG4) showed the same expression pattern as the AS structural genes and functioned in the positive regulation of anthocyanin synthesis by forming the MBW protein complex. This is the first report of a SG4 member with a positive regulatory function. This study provides a foundation for elucidation of the mechanisms of pigment synthesis and metabolism, and a theoretical basis for flower-color-directed breeding.

Funder

National Natural Science Foundation of China

Fund of the Henan Academy of Agricultural Sciences for Distinguished Young Scholars

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3