UPLC–MS/MS and Gene Expression Research to Distinguish the Colour Differences of Rhododendron liliiflorum H. Lév

Author:

Dai Jin1ORCID,Wang Xinglin1ORCID,Meng Xingpan1ORCID,Zhang Xu2,Zhou Qihang3ORCID,Zhang Zhengdong4,Zhang Ximin1ORCID,Yi Yin1,Liu Lunxian1ORCID,Shen Tie13ORCID

Affiliation:

1. Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Engineering Research Center of Carbon Neutrality in Karst Areas, Ministry of Education, Key Laboratory of Environment Friendly Management on High Altitude Rhododendron Diseases and Pests, Institutions of Higher Learning in Guizhou Province, School of Life Science, Guizhou Normal University, Guiyang 550025, China

2. Guizhou Caohai Wetland Ecosystem National Observation and Research Station, Guizhou Academy of Forestry Sciences, Guiyang 550001, China

3. Key Laboratory of Information and Computing Science Guizhou Province, School of Mathematical Sciences, Guizhou Normal University, Guizhou 550025, China

4. College of Mathematics and Information Science, Guiyang University, Guiyang 550001, China

Abstract

Among ornamental plants, the colour of the petals is an important feature. However, the reason for the colour differences of Rhododendron liliiflorum remains unclear. To reveal the differences in the colour of R. liliiflorum, high-efficiency liquid chromatographic collar (UPLC–MS/MS) technology was used to study the yellow and white parts of R. liliiflorum. A total of 1187 metabolites were identified in R. liliiflorum petals, including 339 flavonoid metabolites. Seventy-eight types of flavonoids in these metabolites were found in the yellow and white parts of R. liliiflorum petals, along with 11 other significantly enriched substances. Combining gene expression-related data with differential metabolite data demonstrated effects of enrichment in the flavanonols (fustin), flavonols (epiafzelechin and afzelechin), and flavanones (pinocembrin) of flavonoid biosynthesis; glyccitin, 6″-O-malonylgenistin, and 6-hydroxydaidzein of isoflavonoid biosynthesis; and anthocyanin biosynthesis of malvidin-3-O-galactoside (primulin), delphinidin-3-O-rutinoside, cyanidin-3-O-glucoside (kuromanin), and cyanidin-3-O-rutinoside (keracyanin), which are potentially the contributing factors responsible for the differences in petal colour in R. liliiflorum. This study establishes a connection between the differential metabolites underlying the color differences in the petals of R. liliiflorum and the gene expression in R. liliiflorum. This will provide a foundation for subsequent research on the regulation of flower color in R. liliiflorum and have profound implications for horticultural applications of R. liliiflorum.

Funder

Guizhou Provincial Science and Technology Projects

Guizhou Provincial Basic Research Program

National Science Foundation of China NSFC

Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province, China

Higher Education Science and Research Youth Project of Guizhou Education Department

Key Laboratory of Environment Friendly Management on Alpine Rhododendron Diseases and Pests of Institutions of Higher Learning in Guizhou Province, Guizhou Normal University

Research Foundation for Science & Technology Innovation Team of Guizhou Province

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3