The Molecular Mechanism of Relatively Low-Temperature-Induced Broccoli Flower Bud Differentiation Revealed by Transcriptomic Profiling

Author:

Chai Wenchen12,He Xia1,Wen Boyue1,Jiang Yajie1,Zhang Zixuan1,Bai Rui1,Zhang Xinling3,Xu Jin12,Hou Leiping1,Li Meilan12,Zhang Jing1ORCID

Affiliation:

1. College of Horticulture, Shanxi Agricultural University, Taigu 030801, China

2. Key Laboratory of Innovation and Utilization for Vegetable and Flower Germplasm Resources in Shanxi, Taiyuan 030000, China

3. Institute of Vegetables, Zhengzhou 450000, China

Abstract

Broccoli (Brassica oleracea L. var. italica) has a large, edible green flower head, which is one of its critical economic traits. A prerequisite of broccoli flower head formation is flower bud differentiation (FBD). Low-temperature treatment is an effective way to induce FBD in broccoli. However, the molecular mechanism underlying low-temperature-induced broccoli FBD remains largely unclear. In this study, using broccoli cultivar Zhongqing 10 as the experimental material, we investigated the effects of low-temperature treatment on FBD by comparing the plants grown at low temperatures (17 °C/9 °C, 16 h/8 h) with the control plants grown under normal temperature conditions (25 °C/17 °C, 16 h/8 h). After 15 days of different temperature treatments, the flower buds of the plants growing under the low-temperature condition started to differentiate. However, the control plants remained in the vegetative growth stage, indicating that low temperature successfully induced flower bud formation. Subsequently, a global transcriptomic analysis was conducted to detect the differentially expressed genes (DEGs) during low-temperature-induced FBD in broccoli. A total of 14 DEGs in five phytohormone signaling pathways, 42 DEGs in nine transcription factor families, and 16 DEGs associated with the floral development pathways were identified. More DEGs were present in the auxin signaling pathway than in other phytohormone signaling pathways, which indicated that the auxin signaling pathway played a critical role in modulating low-temperature-induced FBD in broccoli. Furthermore, four TF classes, including bZIP, GCM domain factors, MADS-box factors, and C2H2 zinc finger factors, possessed enriched motifs, indicating that their closely related DETFs ABI5, HY5L, WRKY11, WRKY15, WRKY22, SOC1, AGL8, FLC, SPL8, and SPL15 may be directly involved in the transcription regulation of broccoli FBD. This study provides an important basis for further investigation of the molecular regulatory mechanism of broccoli flower development under low temperatures.

Funder

Natural Science Foundation of Shanxi Province

Special Plan Project of Shanxi Province for the Transformation of Patent

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3