A 15N-Tracing Study to Explore the Coupling Effects of Biochar and Nitrogen Fertilizer on Tomato Growth, Yield, Nitrogen Uptake and Utilization, and the Rhizosphere Soil Environment under Root-Divide Alternative Irrigation

Author:

Zhang Ke1ORCID,Zheng Jian123,Wang Yan13,Shi Cong13,Wu You13

Affiliation:

1. College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Key Laboratory of the System of Biomass Energy and Solar Energy Complementary Energy Supply System, Lanzhou 730050, China

3. Northwest Low Carbon Urban Support Technology Collaborative Innovation Center, Lanzhou 730050, China

Abstract

To investigate the coupling effects of biochar and nitrogen fertilizer on tomato growth, nitrogen uptake and utilization (NUU), and the soil environment, a pot experiment was conducted using 15N-tracing technology from March to July 2021 and from September 2021 to January 2022. Three biochar application rates (B0, B1, and B2; 0, 3, and 6 t/hm2, respectively) and three nitrogen levels (N1, N2, and N3; 150, 300, and 450 kg/hm2, respectively) were set up. The results show that the growth, yield, rate of 15N uptake, nitrogen derived from soil (Ndfs), total nitrogen (TN), 15N utilization, and recovery rate of tomatoes were improved under biochar application, but nitrogen derived from fertilizer (Ndff) gradually decreased. A Pearson correlation analysis showed that the 15N uptake, Ndfs, TN, rhizosphere soil organic matter, soil organic carbon, and TN were significantly positively correlated with the yield and lycopene content of tomatoes. The comprehensive benefit to the tomatoes was evaluated based on combination weighting with the help of the technique for order preference by similarity to ideal solution (TOPSIS). This indicates that the best planting mode was the B2N2 treatment, with a biochar rate of 6 t/hm2 and nitrogen levels of 300 kg/hm2, under the alternative partial root-zone irrigation.

Funder

National Natural Science Foundation of China

Red Willow First-Class Discipline Project of Lanzhou University of Technology

Industry Supporting and Guiding Project of Gansu Higher Education Institutions

Water Science and Technology Project of Jinan City

University Teacher Innovation Fund Project

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3