Recent Advances in Natural Deastringency and Genetic Improvement of Chinese PCNA Persimmon (Diospyros kaki)

Author:

Yang Sichao1,Zhang Meng1,Xu Lei1,Zhang Qinglin2,Zhou Chaohua1,Hu Xinlong1,Luo Zhengrong2ORCID

Affiliation:

1. Horticultural Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China

2. National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Persimmon (Diospyros kaki) is a worldwide fruit cultivated mainly in the East Asia, Mediterranean, Caucasus, Latin America, and Oceania regions. This fruit contains abundant proanthocyanidins (PAs, also called condensed tannins), whose biosynthesis is the main cause of fruit astringency. As the original centre and top producing country, China has discovered a unique type with desirable natural deastringency, the Chinese pollination-constant non-astringent (C-PCNA) persimmon. Studies have revealed that the C-PCNA trait is controlled by a single and dominant locus, which differs from that of another type, the Japanese PCNA type, with recessive loci. In the C-PCNA type, accumulating evidence has shown that the astringency removal process involves two pathways (“dilution effect” and “coagulation effect”). Moreover, molecular marker-assisted selection (MAS) for the natural deastringency trait locus in C-PCNA has been used to test the non-astringency/astringency trait of hybrid offspring at the seedling stage. Importantly, persimmon can bear male flowers, female flowers, and perfect flowers, but sex-linked MAS has been developed for female-only persimmon. This sex-linked MAS, together with astringency-linked MAS and embryo rescue technology, may even shorten the conventional cross-breeding period of about 2–3 years. In addition, recently studies have established a stable genetic transformation system for persimmon transgenic improvement. Despite these efforts, how synthetic PAs and metabolism pathways lead to a deastringent trait remains unclear for persimmon. Thus, our review summarizes the latest research progress on the natural deastringency mechanism in C-PCNA, and we provide a new viewpoint for the genetic improvement of persimmon breeding in China.

Funder

Jiangxi Academy of Agricultural Sciences Ph.D. Start-up Fund

Nanchang Comprehensive Experimental Station of National Pear Industry Technology System

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3