Phytochemical Screening and Antibacterial Activity of Taxus baccata L. against Pectobacterium spp. and Dickeya chrysanthemi

Author:

Sánchez-Hernández Eva1ORCID,González-García Vicente2,Martín-Gil Jesús1ORCID,Lorenzo-Vidal Belén3,Palacio-Bielsa Ana2,Martín-Ramos Pablo1ORCID

Affiliation:

1. Department of Agricultural and Forestry Engineering, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain

2. Department of Agricultural, Forest and Environmental Systems, Agrifood Research and Technology Centre of Aragón, Instituto Agroalimentario de Aragón—IA2 (Universidad de Zaragoza-CITA), Avda. Montañana 930, 50059 Zaragoza, Spain

3. Servicio de Microbiología, Hospital Universitario Rio Hortega, Calle Dulzaina 2, 47012 Valladolid, Spain

Abstract

The yew tree (Taxus baccata L.) is considered in folklore a symbol of immortality due to its qualities of longevity and regeneration. Despite its poisonous reputation, the yew tree has a long history of medicinal use, particularly in the form of extracts from its leaves and bark. In the work presented herein, gas chromatography–mass spectrometry (GC–MS) chemical profiling was applied to the aqueous ammonia/hydromethanolic extracts of several plant organs of T. baccata, leading to the identification of different bioactive compounds than those previously characterized by high-performance liquid chromatography with tandem mass spectrometry (HPLC–MS/MS) in other extraction media. The leaf aqueous ammonia extract was rich in 2-hexylthiophene and 3-O-methyl-d-fructose; 9-octadecenoic and hexadecanoic acid were the main constituents of the bark aqueous ammonia extract; and the fruit hydromethanolic extract contained methyl 2-O-methyl-α-d-xylofuranoside, 1,3-dioxolane derivatives, and erysimoside. The antimicrobial activity of the extracts was assayed against four bacterial pathogens responsible for the soft rot and blackleg diseases of potatoes, viz. Pectobacterium carotovorum subsp. carotovorum, Pectobacterium atrosepticum, Pectobacterium parmentieri, and Dickeya chrysanthemi, resulting in minimum inhibitory concentration (MIC) values as low as 187 μg·mL−1. Bioassays on potato slices confirmed the efficacy of the leaf extract at this dose when applied as a preventive treatment before artificial inoculation with P. carotovorum subsp. carotovorum. In view of this high activity, these extracts may find application in the integrated pest management of soft rot Pectobacteriaceae (SRP) diseases.

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3