Influence of the Culture System and Harvest Time on the Specialized Metabolite Composition of Rocket Salad (Eruca sativa) Leaves

Author:

Buitrago-Villanueva Ivon1ORCID,Barbosa-Cornelio Ricardo1ORCID,Coy-Barrera Ericsson1ORCID

Affiliation:

1. Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia

Abstract

Eruca sativa is a leafy vegetable widely consumed fresh in salads and recognized for the presence of bioactive compounds, such as glucosinolates (GLS) and flavonols. This plant is traditionally cultivated in soils but adapts well to soilless cultures, such as hydroponics and aquaponics. However, despite the good results in the literature on E. sativa cultivation in soilless systems, the influence of the culture systems and harvest time on the specialized metabolite-based chemical composition of E. sativa leaves is not entirely understood. Based on the above, this study aimed to evaluate the specialized metabolite composition of three different cultivation types, i.e., using soil (SCS), nutrient film technique (NFT)-based hydroponic (HCS), and aquaponic (ACS) culture systems, along three growing cycles, and collected at two commercial harvest times, i.e., 21 days after transplanting (DAT) to get early plant material, namely “baby leaf”, and 42 DAT as the traditional harvest time. The chemical composition was obtained by liquid chromatography coupled with mass spectrometry (LC-MS), and multivariate statistics supported the analysis of the whole dataset. The SCS was characterized to promote an important accumulation of two antioxidant flavonols, i.e., (kaempferol and isorhamnetin diglucopyranosides) in young leaves (21 DAT). The hydroponically-grown plants exhibited a smaller number of various compounds. The ACS-cultivated leaves accumulated indole-containing glucosinolates and a marker associated with harvest time, spirobrassinin, a cruciferous oxindoline phytoalexin. These findings constitute the first report of those compounds relevantly accumulated by the effect of soilless cultures and a starting point for further studies related to the metabolite regulation of E. sativa under hydroponics and aquaponics.

Funder

MinCiencias

Military University Nueva Granada

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3