Exogenous Appliance of Nano-Zeolite and Nano-Silicon Elevate Solidago canadensis Invasive Plant Tolerance to Water Deficiency

Author:

Othman Eman Z.1ORCID,El-Attar Asmaa B.1,El-Bahbohy Reham M.2,Abd El-Khalek Sarah N.3,Morgan Sherif H.2,Mahmoud Abdel Wahab M.2ORCID

Affiliation:

1. Department of Ornamental Horticulture, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

2. Department of Agricultural Botany, Plant Physiology Division, Faculty of Agriculture, Cairo University, Giza 12613, Egypt

3. Department of Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt

Abstract

Plant production, soil quality, and a sustainable environment depend on climate change. Drought is a multidimensional stressor that seriously affects plant production. The most sensitive plant to climate change is the invasive goldenrod (Solidago canadensis L.), which has potentially high-value materials that can be used to develop a novel approach to controlling its spread. This study aimed to evaluate the impact of different applications (NPK-chemical fertilizers (T1) as control, nano-silicon (T2), nano-NPK (T3), nano-zeolite-loaded nitrogen (T4), and mixed nano-silicon with nano-zeolite-loaded nitrogen (T5)) on plant growth, flowering, chemical composition, yield, essential oil (EO) productivity, and tolerance of water deficit under newreclaimed soil. The results show that T5 application enhanced morphological traits and photosynthetic parameters (photosynthetic rate, CO2 concentration, and water use efficiency while reducing transpiration rate) in goldenrod plants. Moreover, it promoted the plant nutrients uptake compared to the control. The highest total carbohydrate, flavonoid, and phenol contents, as well as a significant amount of the phytohormone indole-3-acetic acid (IAA), were obtained from the T5 application. Conversely, abscisic acid (ABA) and antioxidant enzymes of catalase (CAT) and superoxide dismutase (SOD) appeared with the highest amounts in control plants (T1).Th interaction effect of T5 and drought stress is indicated by increased EO productivity and therapeutic properties.Previous results provide a way to elevate drought stress resistance for the safety production of S. canadensis and improve their qualitative and quantitative trials as economical solutions to achieve an environmental approach to control their spread.

Funder

Cairo University, Faculty of Agriculture, Giza, Egypt

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3