Morpho-Physiological and Transcriptional Regulation of Root System under Saline Conditions in Nymphaea Plants

Author:

Chen Shaozhou,Du Fengfeng,Huang Qianhao,Gao Xiaojing,Zhang Zhiyuan,Cui JianORCID,Chang YajunORCID,Liu Xiaojing,Yao Dongrui

Abstract

Water lilies (Nymphaea L.) are ancient angiosperms that can be cultivated in both fresh and brackish water. Water lily plants have adapted morphologically and physiologically to the aqueous environment. Nonetheless, little is known about the regulatory mechanisms that enable water lily to acclimate to saline conditions, restricting its production and distribution. To illustrate the role of roots in water lily salinity tolerance, we investigated the adaptive regulation of the water lily root system under high salinity. Aspects of its root architecture, including root length, surface area, volume, and tip number, were significantly reduced by salt stress. Transcriptome sequencing showed that 120 genes were upregulated and 1214 genes were downregulated under salt stress. The differentially expressed genes were mainly enriched in oxidoreductase activity, structural molecule activity, and transmembrane transporter activity. Most ion transporter genes were downregulated, suggesting that water lily may partially close ion channels and/or transporters to avoid excessive ion accumulation or ion imbalance under long-term salt stress. Genes related to NO3− transport were both up- and downregulated, whereas genes related to ammonium transport were uniformly downregulated, suggesting that transcriptional changes may play a role in balancing nitrogen metabolism under long-term saline conditions. The roots showed relatively high concentrations of Na+ and had the ability to hyper-accumulate Na+ under salt stress. These findings provide insight into the regulatory mechanisms that enable water lily roots to tolerate salinity and lay a foundation for the breeding of salt-tolerant cultivars.

Funder

Jiangsu Forestry Science and Technology Innovation and Extension Fund

Foundation of Jiangsu Key Laboratory for the Research and Utilization of Plant Resources

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3