Transformation of Strawberry Plants’ Phenolic Profile after Treatment with a Mechanocomposite Based on Silicon Chelates in the Course of Development under In Vitro, Ex Vitro, and In Vivo Conditions

Author:

Kotsupiy Olga1,Karpova Evgeniya1ORCID,Trofimova Elena2,Novikova Tatyana1,Ambros Elena1ORCID

Affiliation:

1. Central Siberian Botanical Garden, Siberian Branch of Russian Academy of Sciences, 101 Zolotodolinskaya Str., 630090 Novosibirsk, Russia

2. Institute of Solid State Chemistry and Mechanochemistry, Siberian Branch of Russian Academy of Sciences, 18 Kutateladze Str., 630128 Novosibirsk, Russia

Abstract

The positive effect of silicon on plants is thought to be mediated by a modification of phenolic metabolism. The purpose of the study was to evaluate the effect of a silicon-based mechanocomposite (MC) on alterations of the phenolic profile of strawberry plants in the course of development under in vitro, ex vitro, and in vivo conditions. Aqueous ethanol extracts of aboveground parts of in vitro–derived plants (Fragaria × ananassa cv. ‘Solnechnaya polyanka’) were subjected to HPLC. Nineteen individual phenolic compounds (hydroxybenzoic and hydroxycinnamic acids, catechins, ellagic acid derivatives, and flavonol glycosides) were quantified. The results revealed phenolic profiles specific to each studied stage and significant transformations of the profiles by the MC. It induced strong upregulation of hydroxycinnamic acid during in vitro rooting and of catechins and hydroxybenzoic acids during ex vitro acclimation. At ex vitro and in vivo stages, the emergence of quercetin glycosides and ellagitannins was registered, and the MC elevated their levels during ex vitro acclimation and field growth. Principal component analysis confirmed the significant effect of the MC on the phenolic profile at all stages, and this effect was the strongest during ex vitro acclimation. The results are consistent with previous reports on the modification of phenolic profiles of plants by silicon-derived biostimulants.

Funder

Russian Science Foundation and the Government of the Novosibirsk Region

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3