Exogenous Application of Chitosan Alleviate Salinity Stress in Lettuce (Lactuca sativa L.)

Author:

Zhang Geng,Wang Yuanhua,Wu Kai,Zhang Qing,Feng Yingna,Miao Yu,Yan Zhiming

Abstract

Soil salinity is one of the major factors that affect plant growth and decrease agricultural productivity worldwide. Chitosan (CTS) has been shown to promote plant growth and increase the abiotic stress tolerance of plants. However, it still remains unknown whether the application of exogenous CTS can mitigate the deleterious effects of salt stress on lettuce plants. Therefore, the current study investigated the effect of foliar application of exogenous CTS to lettuce plants grown under 100 mM NaCl saline conditions. The results showed that exogenous CTS increased the lettuce total leaf area, shoot fresh weight, and shoot and root dry weight, increased leaf chlorophyll a, proline, and soluble sugar contents, enhanced peroxidase and catalase activities, and alleviated membrane lipid peroxidation, in comparison with untreated plants, in response to salt stress. Furthermore, the application of exogenous CTS increased the accumulation of K+ in lettuce but showed no significant effect on the K+/Na+ ratio, as compared with that of plants treated with NaCl alone. These results suggested that exogenous CTS might mitigate the adverse effects of salt stress on plant growth and biomass by modulating the intracellular ion concentration, controlling osmotic adjustment, and increasing antioxidant enzymatic activity in lettuce leaves.

Funder

the Natural Science Foundation of the Jiangsu Higher Education Institutions of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Reference87 articles.

1. Introduction to Soil Salinity, Sodicity and Diagnostics Techniques;Shahid,2018

2. Plant salt-tolerance mechanisms

3. Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance

4. Adaptation Mechanism of Salt Excluders under Saline Conditions and Its Applications

5. Alleviation of salt stress in lettuce (Lactuca sativa L.) by plant growth-promoting rhizobacteria;Azarmi-Atajan;J. Hortic. Postharvest Res.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3