Abstract
Global warming is predicted to be increased in the upcoming years, resulting in frequent heatwaves or hot days worldwide, which can seriously affect crop growth and productivity. The responses of heat stress to several photophysiological and biochemical traits in three tomato cultivars were investigated in a pot experiment, and the heat tolerance capability of these cultivars was evaluated based on the investigated traits. The experiment was followed by a factorial completely randomized design, and the factors were (i) tomato cultivars (BARI Hybrid Tomato-5, BARI Tomato-14, and BARI Tomato-15) and (ii) heat stress (control and heat). The plants of three tomato cultivars were exposed to short-term heat stress (four days at 38/25 °C day/night temperature) at the flowering stage. The measured traits such as dry mass, leaf greenness (SPAD), maximum photochemical efficiency of photosystem II (Fv/Fm), photosynthetic rate (A), stomatal conductance (gs), transpiration rate (E), leaf chlorophyll, and carotenoid content were significantly declined, while the catalase and ascorbate peroxidase activities were increased by heat stress in all three tomato cultivars except BARI Tomato-15, which showed unaltered gs, E, and carotenoids. The percent reduction (over control) in SPAD, Fv/Fm, A, total chlorophyll, and total carotenoids was significantly lower (11, 06, 25, 34, and 19%, respectively), whereas the percent increase in catalase and ascorbate peroxidase activities was substantially higher (70 and 72%, respectively) in BARI Tomato-15 than in other cultivars. Based on the measured physiological and biochemical traits, the cultivar BARI Tomato-15 showed better heat tolerance than the other cultivars.
Subject
Horticulture,Plant Science