Aroma Components Analysis and Origin Differentiation of Black Tea Based on ATD-GC-MS and E-Nose

Author:

Huang Jianfeng12,Yan Tingyu234ORCID,Yang Jiangfan1,Xu Hui1

Affiliation:

1. College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China

2. College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China

3. Faculty of Agronomy, Jilin Agricultural University, Changchun 130118, China

4. Baicheng Academy of Agricultural Sciences, Baicheng 137000, China

Abstract

Black tea (Fuyun 6) samples collected from three regions, Youxi, Fu’an, and Datian, were analysed by automatic thermal desorption-gas chromatography–mass spectrometry (ATD-GC–MS) combined with the electronic nose (E-nose) technique to investigate the aroma composition differences between black teas from different regions. The response surface methodology was used to optimize the ATD conditions for extracting the aroma components from the black tea. The results revealed that the optimal conditions for aroma component accumulation from black tea samples included a sample weight of 2.8 g, an adsorption time of 39 min, an adsorption temperature of 75 °C, and a cold trap temperature of −30 °C. The ATD-GC–MS analyses identified a total of 71 aroma components in the black tea samples, of which 31 were utilized to differentiate the origins of the black teas. Additional aroma activity analyses indicated that benzyl alcohol, linalool, hexanal, octanal, and nonanal had odour activity values (OAVs) greater than 10. Additionally, the OAV of decanal exceeded 100, indicating its significant contribution to the aroma profile of Fuyun 6 black tea. The E-nose results demonstrated the ability to differentiate the black tea samples from the three different origins. This study successfully identified the specific aroma substances associated with different tea origins, providing valuable insights into the aroma characteristics of black teas from various regions.

Funder

the Construction Project for Technological Innovation and Service System of Tea Industry Chain at Fujian Agriculture and Forestry University

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3