Determining the Relationship between Aroma and Quality of Bao-Chung Tea by Solid-Phase Microextraction (SPME) and Electronic Nose Analyses

Author:

Chen Po-An1,Liu Chieh-I1,Chen Kuo-Renn2

Affiliation:

1. Plant Technology Research Center, Agricultural Technology Research Institute, Hsinchu 300, Taiwan

2. Tea Research and Extension Station (TRES), Taoyuan 326, Taiwan

Abstract

Despite extensive studies, the relationship between the quality/quantity of tea odorants and oolong tea quality remains unclear. To investigate the key components affecting Bao-chung tea quality, we collected samples of different grades from a tea-tasting competition and determined the content and composition of volatile components and individual catechins using gas chromatography–mass spectrometry and high-performance liquid chromatography. We used an electronic nose (E-nose) to collect odor component signals and established a quality recognition model. The different tea grades did not significantly differ in catechin content, but their specific odor intensity and proportion of odor components varied significantly. Linear discriminant analysis showed that the intensity and proportion of volatile organic compounds could be used for distinguishing the different grades of Bao-chung tea. By combining different quantities of indole, linalool, and butanoic acid and proportions of p-cymene, cis-β-ocimene, nonanal, allo-ocimene, cis-jasmone, and α-farnesene, the ability to distinguish among Bao-chung tea grades was significantly improved. Our results revealed that the quality of Bao-chung tea should be evaluated based on the combined perception of odor component intensity and proportion rather than solely relying on the concentration or composition of specific compounds. Therefore, individuals can judge a Bao-chung tea grade based on the combined perception of odor component intensity and proportion. The E-nose can be used to identify Bao-chung tea grades based on its ability to determine the odorant composition.

Funder

National Science and Technology Council

Publisher

MDPI AG

Subject

Horticulture,Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3